
©2014	Seeed	Technology	Inc.	 MB_2014_D02	

1
	

MeshBee®

Open Source ZigBee RF Module
CookBook

©2014	Seeed	Technology	Inc.	
www.seeedstudio.com	

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

2
	

	

	
	
	
	
	
	
	
	
	
	

Doc Version Date Author Remark
v0.1	 2014/05/07	 Oliver	 Created	
v0.2	 2014/06/18	 Oliver	 	
v0.3	 2016/1/21	 Jack	 Modified	the	example	according	to	the	

firmware	v1004	

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

3

Table of contents
	

	

	
	
	
	
	

Table	of	contents	
Chapter 1: Getting Started .. 4

1.1 Introduction .. 4
1.2 Installing IDE .. 5
1.3 Setting up the MeshBee .. 8
1.4 Upgrade firmware ... 10
1.5 Setting up the network .. 11

Chapter 2: Example of Mode Operation ... 13
2.1 AT mode .. 13

Additional Documentation .. 14
2.2 API Mode .. 15

Remote led blink example .. 15
Sending Data packets example ... 18

2.3 MCU Mode ... 21
Mechanism .. 21
Additional documentation ... 23
Blink example in AUPS .. 23

2.4 Data Mode ... 24
Chat example .. 24

Chapter 3: Handle a sleep node .. 26
3.1 Typical application scenario .. 26
3.2 implementation ... 26
3.3 Configuring Sleep ... 28

Sleep example in AUPS .. 28
Chapter 4: Make an RPC .. 32

4.1 What's a micro-RPC? .. 32
4.2 What kind of system can make an RPC? .. 32
4.3 Why micro-RPC? .. 32
4.2 How to deploy your own PRC method? ... 32

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

4

Introduction
	

	

Chapter	1:	Getting	Started	
	
	
	
1.1 Introduction	
	

MeshBee® is a 2.4 GHz wireless zigbee RF module. It use microchip JN516x from NXP that
enables several different flvors of standards-based zigbee mesh networking. Our released firmware

fully supports Zigbee Pro stack. You can use MeshBee® in three different ways:
Master Mode: the factory firmware warps the complicated Zigbee stack operation into a few

easy to use serial commands(AT commands).
Slave Mode: for a complex mesh network, a host application can send API frames to the

MeshBee® that contain short address and payload information instead of using AT command.
Transparent Mode: MeshBee® can also work as a transparent serial communication node that

can be part of a simple point-to-point connection. When operating in this mode, the modules act as a
serial line replacement - all UART data received through UART1 is directly send to a specified
remote node.

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

5

Installing IDE
	

	

1.2 Installing	IDE	
	

NXP provides full-scale development environment, tools and documents. The development
environment consists of the SDK toolchain and the ZigBee stack SDK. Please visit NXP's website to
get some detailed description: http://www.nxp.com/techzones/wireless-connectivity/smart-energy.html

To create the development environment, perform these steps:
1) Install JN-SW-4041 SDK Toolchain to default disk: C:/
2) Install JN-SW-4064 ZigBee Smart Energy SDK to default disk: C:/
3) Install JN-SW-4067-JN516x ZigBee Home Automation SDK to default disk C:/

Note: MeshBee’s factory firmware is developed on top of the
smart energy profile.

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

6

Installing IDE
	

	

When finished the installing, you can test the tool chain if you are not sure whether it is
successful or not. Perform these steps:

1) Clone the latest firmware source code from github.
2) Copy the source code folder to C:/Jennic/Application/.
3) Open Jennic Bash Shell.
4) Type these shell commands:

cd MeshBeeMasterBranch
cd build
./build.sh

Note: The developing toolchain supports windows only. For
Linux and Mac users, a windows VM is recommended.

Note: execute ./build.sh or ./build_xxx_clean.sh
+ ./build_xxx.sh. Make sure the “clean” step was taken.

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

7

Installing IDE
	

	

If three binary files are generated successfully, congratulations, you have finished all the

preparation work.

Open eclipse IDE and import the project, you can catch a glimpse of the firmware:

To edit the .oscfgdiag file and .zpscfg file, you should install the eclipse plugins according to the guide in

section 6.2.2 in <SDK Installation and User Guide.pdf>.

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

8

Setting up the MeshBee
	

	

1.3 Setting	up	the	MeshBee	
	
	

	
	

To assemble your experimental environment, perform the following steps:
1) Step1: Insert MeshBee into the socket of UartBeeV5;
2) Step2: Connecting UartBeeV5 with PC by USB port;

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

9

Setting up the MeshBee
	

	

Note: Switch the SW to “3V3” and SW3 to “Prog” position at
first.

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

10

Upgrade firmware
	

	

1.4 Upgrade	firmware	
	

A wireless network comprises a set of nodes that can communicate with each other
by means of radio transmissions according to a set of routing rules (for passing messages between
nodes). ZigBee network includes three types of node:

1) Coordinator: This is the first node to be started and is responsible for forming the network by

allowing other node to join the network through it.
2) Router: This is the node with routing capability, and is also able to send/receive data.
3) End device: Only capability to send/receive data.

Different device role should burn different image. Burn the latest firmware using JN51xx Flash
Programmer. Four steps are required as below:

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

11

Setting up the network
	

	

1.5 Setting	up	the	network	
	
	
	
	

Zigbee network lifecycle

Note: When you burn a new binary file which is different
from the previous one. For example: burn an end.bin overwrite the
coo.bin, you should erase the EEPROM completely at frist.

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

12

Setting up the network
	

	

Normally, MeshBee will form the Network automatically. If a router or end device failed to join
network, you can use command “ATRS” to rescan and perform network actions again.

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

13

Example of Mode operation
	

	

Chapter	2:	Example	of	Mode	Operation	
	

MeshBee has four different types of mode: AT, API, DATA, MCU, illustrated in figure below:

No matter which mode MeshBee works in, input “+++” can go back to AT command mode.

2.1 AT	mode	
	

The AT commands that MeshBee radios use for interactive are a descendant of hayes command
set. Every AT command starts with “AT”, and followed by two characters that indicate which
command is being executed, then by some optional configuration values.

To communicate with MeshBee from Win7, we will use SecureCRT. In CoolTerm on a Mac,
the procedure works pretty much the same.

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

14

Example of Mode operation
	

	

Use AT commands is very easy. Here are the steps:
1) Input “+++” to go to AT command mode.
2) Wait for a MeshBee “ok” response.
3) To read a register, just typing an AT command.
4) To set a register, type an AT command followed by the register value.

AT command contain three different types:

Additional Documentation

For more information about the AT command operations, please refer to the MeshBee User’s
manual v0.1.

Note: The baud-rate must be set to 115200 in SecureCRT.
Make sure MeshBee works in AT mode.

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

15

Example of Mode operation
	

	

2.2 API	Mode	
	

API is simply a set of standard interfaces created to allow other MCU to interact with MeshBee.
For our purposes, API supports local operation and remote operation. For example, a host application
can send an “ATIO” frame to Coordinator A, A will set its GPIO when it receives this frame. The
most important thing to note is that APIs are specifically engineered to enable MeshBee to talk
efficiently to other MCU. The target of API-mode is to transmit highly structured data quickly and
reliably.

Remote led blink example

Sending commands over the wireless network to control the remote device is kind of
exhilarating, it is something you can accomplish in API mode.

Some kinds of AT commands can also be sent wirelessly for execution on remote device. Here,
we implement a remote IO control demo.

Hardware list:

Arduino X1
MeshBee X2
XBee shield X1
UartBeeV5 X1

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

16

Example of Mode operation
	

	

Install hardware like that:

1) Connect Arduino with MeshBee’s Coordinator through UART, switch ‘USB_UART_M8’
to M8 side, switch ‘D11/D12_XBEE_UART’ to UART side.

2) Connect MeshBee’s Router with UartBeeV5.

This example will send API packet from Coordinator, and control the RSSI
led on the UARTSBee where the Router is plugged in. You should setup the
network first to make the Router connect to the Coordinator, then put the
Coordinator into API mode with the ATAP command. (The Rounter can be under
any mode, it will always accept the remote command.)

Arduino sketch:

#include <Arduino.h>

/* LED Pin */
int led = 13;

/* declaration */
void remoteATIO_Onoff(unsigned char onoff);

void setup() {
 pinMode(led, OUTPUT);
 /* open the serial port at 115200 bps */
 Serial.begin(115200);
}

void loop() {

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

17

Example of Mode operation
	

	

 remoteATIO_Onoff(1);
 digitalWrite(led, LOW);
 delay(500);
 remoteATIO_Onoff(0);
 digitalWrite(led, HIGH);
 delay(500);
}

/* Turn on/off remote Led */
void remoteATIO_Onoff(unsigned char onoff) {
 unsigned char remote_at_req[] = {
 0x01, //frame ID
 0x00, //option
 0x70, //AT cmd index
 //-- start of 4 bytes
 0x00, //read/write: 0x00 - write
 0x09, //IO pin - RSSI
 0x00, //State
 0x00,
 //-- end of 4 bytes
 0xf5, //unicast addr high byte
 0x28, //unicast addr low byte
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 //unicast long addr
 };
 remote_at_req[5] = onoff;

 int frm_len = sizeof(remote_at_req);

 unsigned char sum = 0;
 for (int i=0; i<frm_len; i++)
 {
 sum += remote_at_req[i];
 }

 Serial.write(0x7e); //start delimiter
 Serial.write(frm_len); //length
 Serial.write(0x17); //API identifier: remote AT require
 Serial.write(remote_at_req, frm_len); //API_REMOTE_AT_REQ frame
 Serial.write(sum); //check sum

}

Sending Data packets example

Now that you may understand how API mode works. It’s simple enough to

write your own MCU code to work with API mode.
Sometimes, you want to send some data packet in your protocol. API data

packet can meet your requirements.
This example uses the same hardware as the remote led blink example.

Steps should be done:
1) Configure the Router into data mode with the ATDT command.
2) Reflash the Arduino board with the following code.

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

18

Example of Mode operation
	

	

Arduino sketch:

#include <Arduino.h>

/* LED Pin */
int led = 13;

/* declaration */
void sendDataPkt();

void setup() {
 pinMode(led, OUTPUT);
 /* open the serial port at 115200 bps */
 Serial.begin(115200);
}

void loop() {
 digitalWrite(led, LOW);
 delay(500);
 digitalWrite(led, HIGH);
 delay(500);
 sendDataPkt();
}

void sendDataPkt() {
 unsigned char data_pkt[] = {
 0x01, //frame ID
 0x00, //option
 0xf5, //unicast addr high byte
 0x28, //unicast addr low byte
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, //unicast long addr
 0x07, //data length
 's', //data begin
 'e',
 'e',
 'e',
 'd',
 '\r',
 '\n'
 };

 int frm_len = sizeof(data_pkt);
 unsigned char sum = 0;
 for (int i=0; i<frm_len; i++)
 {
 sum += data_pkt[i];
 }

 Serial.write(0x7e); //start delimiter
 Serial.write(frm_len); //length
 Serial.write(0x02); //API identifier: API_DATA_PACKET
 Serial.write(data_pkt, frm_len); //API_DATA_PACKET frame
 Serial.write(sum); //check sum

}
	

	
Notice that the length of the data block can be flexible but with the right

data length specified.

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

19

Example of Mode operation
	

	

2.3 MCU	Mode	
	

In order to simplify the development of application for user, we create an
Arduino-ful user programming space(AUPS). The most important thing to note is
AUPS is not a real Arduino because it doesn’t support Arduino-IDE. We only
present two Arduino style functions:
/* arduino setup */
void arduino_setup(void) {
/**/
}
/*arduino loop*/
void arduino_loop(void) {
/**/
}

Mechanism

Experienced C/C++ programmers may wonder where the program’s main()
entry point function has gone. It’s there, but it’s hidden under the covers by a task
of JenOS.

A task called “Arduino_Loop” was running on background. There are several
other tasks created on MeshBee too. So Arduino_Loop should release CPU
periodically to let other task use it.

A software timer was created to activate Arduino_Loop periodically.

void ups_init(void)
{
 /* Init ringbuffer */
 UPS_vInitRingbuffer();

 /* init suli */
 suli_init();

 /* init arduino sketch with arduino-style setup function */
 arduino_setup();

 /* Activate Arduino-ful MCU */
 OS_eStartSWTimer(Arduino_LoopTimer, APP_TIME_MS(500), NULL);
}

OS_TASK(Arduino_Loop)
{
 /*
 Mutex, only in MCU mode,this loop will be called
 or data in ringbuffer may become mess

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

20

Example of Mode operation
	

	

 */
 if(E_MODE_MCU == g_sDevice.eMode)
 {
 /* Back-Ground to search AT delimiter */
 uint8 tmp[AUPS_UART_RB_LEN];
 uint32 avlb_cnt = suli_uart_readable(NULL, NULL);
 uint32 min_cnt = MIN(AUPS_UART_RB_LEN, avlb_cnt);

 /* Read,not pop,make sure we don't pollute user data in AUPS
ringbuffer */
 vHAL_UartRead(tmp, min_cnt);
 if (searchAtStarter(tmp, min_cnt))
 {
 /* Set AT mode */
 setNodeState(E_MODE_AT);
 suli_uart_printf(NULL, NULL, "Enter AT Mode.\r\n");

 /* Clear ringbuffer of AUPS */
 OS_eEnterCriticalSection(mutexRxRb);
 clear_ringbuffer(&rb_uart_aups);
 OS_eExitCriticalSection(mutexRxRb);
 }
 else
 {
 arduino_loop();
 }

 /*
 * If a sleep event has already been scheduled in arduino_loop,
 * don't set a new arduino_loop
 */
 if(true == bGetSleepStatus())
 return;

 /* re-activate Arduino_Loop */
 if(g_sDevice.config.upsXtalPeriod > 0)
 {
 OS_eStartSWTimer(Arduino_LoopTimer,
APP_TIME_MS(g_sDevice.config.upsXtalPeriod), NULL);
 }
 else
 {
 OS_eActivateTask(Arduino_Loop); //this task is the lowest
priority
 }
 }
}

Write your own code in “ups_arduino_sketch.c”, then compile and upload

the binary file to MeshBee.
In AT mode, using “ATMFxx” to set the delay period between each

Arduino_Loop. The delay period, which is also called “simulate crystal oscillator
frequency” (not a real one), range from 4ms to 3000ms.

Then using “ATMC” to enter MCU mode.

Additional documentation:

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

21

Example of Mode operation
	

	

For more information about the function list that AUPS can call, please

refer to the MeshBee User’s manual v0.1.

Blink example in AUPS
/*
Blink demo in AUPS
UartBeeV5’s Sleep/On Led will blink
*/
IO_T led_io;
int16 state = HAL_PIN_HIGH;
void arduino_setup(void)
{
 suli_pin_init(&led_io, 9); //init led
 suli_pin_dir(&led_io, HAL_PIN_OUTPUT);
}

void arduino_loop(void) {
 suli_pin_write(&led_io, state);
 if(state == HAL_PIN_HIGH)
 state = HAL_PIN_LOW;
 else
 state = HAL_PIN_HIGH;
}
	

	

2.4 Data	Mode	
	

When operating in Data mode, the modules act as a serial line. All UART data received through
the UART1 is transmitted to a specified remote device.

To use a transparent connection, take the following steps:
1) Set unicast address: ATDAxxx
2) Enter Data Mode: ATDT

Chat example

Coordinator say HI to Router:

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

22

Example of Mode operation

	

	

Router receives Coordinator’s greeting and reply to it:

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

23

Example of Mode operation
	

	

Coordinator receives Router’s reply:

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

24

Handle a sleep node
	

	

Chapter	3:	Handle	a	sleep	node	
	

An end device can join networks and participate in communications, but never act as a step stone
for any other devices. End device always require a router or the coordinator to be their parent device.
In the zigbee stack, only an end device can sleep. When an end device goes to sleep, any external
contact will fail because it turns off its trans/receiver and most of the integrated peripherals. Its
parent will store a single message for it, and this piece of message will be discarded after 7 seconds,
so make sure the traffic is light-weight in a sleep enabled network.

3.1 Typical	application	scenario	
	

Using sleep mode, the life of an end device powered by battery can stretch into months and
sometimes even years.

1) If the end devices are only needed to send a heartbeat back to the central node cyclically,
you can enable the cyclic sleep mode.

2) If the end devices not only require cyclical wake, but also require a button wake, you can
enable the cyclic sleep with pin wake mode.

3.2 Implementation	
	

Sleep mode always works with APUS. Two software timer are created to activate bound task,
The main implementation was illustrated in figure below:

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

25

Handle a sleep node
	

	

Figure: Implementation of sleep end device

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

26

Handle a sleep node
	

	

3.3 Configuring	Sleep	
	

There are three AT commands associated with sleep mode.

An end device has four sleep behaviors, which can be set with ATSM commands.
1) ATSM0: Disable sleep mode

The end device will never go to sleep in that mode even if you schedule a sleep in AUPS.
2) ATSM1,2,3: These modes are currently undefined, and retained for future use.
3) ATSM4: cyclic sleep mode

The node will sleep and wake cyclically. Set the sleep time using ATSP, set how long before a
node goes to sleep using ATST.

4) ATSM5: cyclic sleep mode with pin wake
This is generally the same as cyclic sleep mode but also waking by PIO (any of the digital

IO).

Sleep example in AUPS

/*

Sleep demo in AUPS

End device sends ten heartbeats and then sleep 3s

*/

ANALOG_T temp_pin;

void arduino_setup(void)

{

suli_analog_init(&temp_pin, TEMP);

}

Note: Please refer to User’s manual for more details.

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

27

Handle a sleep node
	

	

void arduino_loop()

{

/* Finish user job */

static jobCnt = 0;

uint8 tmp[sizeof(tsApiSpec)]={0};

tsApiSpec apiSpec;

int16 temper = suli_analog_read(temp_pin);

sprintf(tmp, "E-HeartBeat:%ld\r\n", temper);

PCK_vApiSpecDataFrame(&apiSpec, 0xec, 0x00, 0x0000, tmp, strlen(tmp));

/* Air to Coordinator */

uint16 size = i32CopyApiSpec(&apiSpec, tmp);

if(API_bSendToAirPort(UNICAST, 0x0000, tmp, size))

{

suli_uart_printf(NULL, NULL, "<HeartBeat%d>\r\n", jobCnt);

jobCnt++;

}

if(10 == jobCnt)

{

jobCnt = 0;

Sleep(3000);

}

}

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

28

Make an RPC
	

	

Chapter	4:	Make	an	RPC	
	

A micro-RPC framework was implemented in MeshBee firmware. Here is the brief guide for
your application programming.

4.1 What's	a	micro-RPC?	
	

A method used for connecting two remotely placed functions by first using a protocol for
connecting the processes. It’s used in the cases of distributed tasks.

Micro-RPC is a tiny RPC framework on resource-limit embedded device.

4.2 What	kind	of	system	can	make	an	RPC?	
	

Each system in peer-to-peer mode can make an RPC.
RPC Commands are in the format:

"/<Object name>/<Method name> <Arguments separated by spaces>"
This is an example of the RPC command required to turn on a LED on MeshBee:

"/myled/write HIGH"

4.3 Why	micro-RPC?	
	

Divide different kinds of remote procedure into groups which is marked by a simple
obj_name.

Time-complexity of the function search is highly reduced with the hash algorithm.

4.2	How	to	deploy	your	own	PRC	method?	
	

1) Open /include/rpc_usr.h at first.
2) Add a set of methods which is divided into groups according to their objName to a

methodEntity.
3) Add one obj(something like air_conditioner, or light_switch) to rpcEntity[]

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

29

Make an RPC
	

	

4) Implement these RPC method.

/*

Rpc demo in rpc_usr.h

modify to meet your request

*/

tsMethodEntity methodEntityA[] = {

{0, "run", A_run},

{0, "stop", A_stop}

};

tsMethodEntity methodEntityB[] = {

{0, "run", B_run},

{0, "stop", B_stop}

};

/* Step2, Rpc Entity: HashKey, objName, MethodArray, MethodNum */

tsRpcEntity rpcEntity[] = {

{0, "home_obj1", methodEntityA, METHOD_ENTITY_SIZE(methodEntityA)},

{0, "office_obj2", methodEntityB, METHOD_ENTITY_SIZE(methodEntityB)},

};

/* Step3, [Rpc Method defined here] */

bool A_run(tsArguments tsArg)

{

DBG_vPrintf(TRACE_RPC, "home_obj is running \r\n");

return TRUE;

}

bool A_stop(tsArguments tsArg)

{

DBG_vPrintf(TRACE_RPC, "home_obj is stopping \r\n");

return TRUE;

}

©2014	Seeed	Technology	Inc.	 MB_2014_D02	

30

Make an RPC
	

	

bool B_run(tsArguments tsArg)

{

DBG_vPrintf(TRACE_RPC, "office_obj2 is running \r\n");

return TRUE;

}

bool B_stop(tsArguments tsArg)

{

DBG_vPrintf(TRACE_RPC, "office_obj2 is stopping \r\n");

return TRUE;

}

After that, you can call these remote functions at any nodes by RPC_vCaller(uint64
macAddress, char* rpcCmd):

eg: RPC_vCaller(0x00158d0000355273, "/home_obj1/run param1 param2");

