
What Is AWS Icebreaker?

AWS Icebreaker is a service that enables secure, bi-directional

communication between internet-connected things (sensors, actuators,

devices, applications, etc.) and the cloud over MQTT and HTTP. You can

think of Icebreaker as a message processing engine. It receives messages

from internet connected "things" and processes those messages. This

includes recording, transforming, augmenting, or routing messages to AWS,

other web services and applications. Manufacturers, application developers,

and enterprises can use Icebreaker to extend the onboard capabilities of

physical products by using the cloud to execute logic, communicate with other

products/services, and process telemetry data. End users can control their

physical devices from smart phone apps.

The following diagram illustrates a high-level view of the Icebreaker service:

You can interact with Icebreaker in a number of ways:

 The Icebreaker Console allows you to configure AWS Icebreaker

services within a graphical environment

 The Icebreaker Command Line Interface (CLI) allows you to configure

AWS Icebreaker services from the command line

 The Icebreaker SDKs allow you to write applications on top of

Icebreaker

 The Icebreaker Thing SDK allows you to write applications in C that run

on internet-connected things

Things are any clients such as micro controllers, sensors, actuators, mobile

devices, or applications that use Icebreaker to connect to the AWS cloud. The

Thing SDK makes it simple to write code running on Internet connected things

to communicate with the Icebreaker service.

There are essentially three types of client applications that interact with

Icebreaker:

 Embedded applications running on Internet connected devices

 Companion applications running on mobile devices or on the web.

 Server applications

Embedded applications are written in C with the Icebreaker thing SDK. They

enable your device to send MQTT messages to and recieve MQTT messages

from Icebreaker. They define what information your devices send to

Icebreaker and how they respond to messages recieved from Icebreaker.

Companion applications are written with the Icebreaker SDKs. These

applications allow you to remotely control your devices.

Server applications query Icebreaker for information about your things and

process and display the information. A device dashboard showing all active

devices is an example of a server application.

Authentication is provided by X509 certificates or AWS Cognito Identities.

Authorization is provided by Icebreaker roles and IAM roles.

Getting Started with AWS Icebreaker

There are three ways to interact with the Icebreaker service:

 Using the Icebreaker Console

 Using the Icebreaker CLI

 Using the Icebreaker SDKs

The following sections will describe using the icebreaker console in more

detail. If you want to use icebreaker CLI, you can refer to AWS-Icebreaker-

User-Guide.pdf

Using the Icebreaker Console

The Icebreaker console can be found at: Icebreaker Console. The console is

divided up into three sections:

 Certificates

 Rules and Integrations

 Access and Policies

These sections are selectable by clicking on the appropriate icon in the upper

left hand corner of the console.

Certificates

The certificates section allows you to submit a certificate signing request to

generate a new certificate. It also allows you to activate, transfer, deactivate,

or revoke and existing certificate.

Rules and Integrations

The rules and integrations section allows you to add a new rule and view your

existing rules.

Access and Policies

The access and policies section allows you to add new Icebreaker policies

and view existing Icebreaker policies.

Signe to Icebreaker console

If you didn’t have AWS account, you need go to the http://aws.amazon.com/ and register an

account

https://icebreaker-preview.us-east-1.aws.amazon.com/Icebreaker
https://icebreaker-preview.us-east-1.aws.amazon.com/Icebreaker
http://aws.amazon.com/

Create a Thing in the Thing Registry

Go the Icebreaker console ,click the Dashboard.

Create a thing, e,g: temperature.

The web page will appear “Connect device” button, Click it.

https://icebreaker-preview.us-east-1.aws.amazon.com/iot/home

Choose which SDK you want to use. If you use Beaglebone Green, we recommend select NodeJS .

If you use Seeeduino cloud , we recommend select Arduino.

Create new cert and new policy.

Download the three files. Then power on your board.

Amazon provides the github maintain the code. Next page is the latest code introduction. We also

provide on-board code to test the icebreaker.

AWS MQTT publish and subscribe

Upload xxxxxx-private.pem.key and xxxxxxx-certificate.pem.crt to prodCerts folder.

Rename 774fd93c59-private.pem.key as device_identity.pem.

Rename 774fd93c59-certificate.pem.crt as device_key.pem.

If you use mqtt protocol, you need modify the port to 8883.

/var/lib/cloud9/IotSdkJS/src/aws_iot.js

this.client_params.port = checkParams(client_params.port, 8883);

If you use http protocol, you need modify the port to 443. and default port is 443.

Run the Helloworld.js example. You can see publishes and subscribe successfully.

e.g Grove temperature sensor.

Connect the Grove temperature sensor to BBG, Modify the time_pub.js file.

var aws_iot = require("../src/aws_iot.js");

var net = require('net');

var exec = require('child_process').exec;

var HOST = '127.0.0.1';

var PORT = 7000;

var temperature = 25;

var client_params = {

 host: 'mqtts://g.us-east-1.pb.iot.amazonaws.com',

 clientId: 'sdk_pub2'

};

// Create a server instance, and chain the listen function to it

net.createServer(function(socket) {

 console.log('CONNECTED: ' + socket.remoteAddress +':'+ socket.remotePort);

 // Add a 'data' event handler to this instance of socket

 socket.on('data', function(data) {

 //console.log('DATA ' + socket.remoteAddress + ': ' + data);

 temperature = data;

 socket.write('This is your request: "' + data + '"');

 });

 // Add a 'close' event handler to this instance of socket

 socket.on('close', function(data) {

 console.log('Socket connection closed... ');

 });

}).listen(PORT, HOST);

iot_client = new aws_iot(client_params);

iot_client.connect();

exec('python Grove_Starter_Kit_for_BBG/Python-App.py',function(error,stdout,stderr){

 if(stdout.length >1){

 console.log('you offer args:',stdout);

 } else {

 console.log('you don\'t offer args');

 }

 if(error) {

 console.info('stderr : '+stderr);

 }

});

setInterval(function(){

 iot_client.publish('topic/test',temperature);

}, 2000);

Download https://github.com/Seeed-Studio/Grove_Starter_Kit_for_BBG to IotSdkJS fold. Create a

python file named Python-App.py.

import socket

import grove_temperature_sensor

if __name__ == "__main__":

 client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 client.connect(('127.0.0.1', 7000))

 while True:

 temperature = grove_temperature_sensor.read_temperature('v1.2')

 client.sendall(str(temperature))

 data = client.recv(1024)

 print data

 client.close()

 print 'Received', repr(data)

https://github.com/Seeed-Studio/Grove_Starter_Kit_for_BBG

Modify the time_sub.js file.

var aws_iot = require("../src/aws_iot.js");

var client_params = {

 host: 'mqtts://g.us-east-1.pb.iot.amazonaws.com',

 clientId: 'sdk_sub2'

};

var iot_client = new aws_iot(client_params);

iot_client.connect();

//iot_client.subscribe(['topic/a', 'topic/b']);

iot_client.subscribe('topic/test');

iot_client.onMessage(function(topic, message){

 console.log(topic.toString() + ' '+ message.toString());

});

First, run the time_pub.js to publish temperature data to AWS.

Second, run the time_sub.js to subscribe data from the AWS.

