What Is AWS Icebreaker?

AWS Icebreaker is a service that enables secure, bi-directional
communication between internet-connected things (sensors, actuators,
devices, applications, etc.) and the cloud over MQTT and HTTP. You can
think of Icebreaker as a message processing engine. It receives messages
from internet connected "things" and processes those messages. This
includes recording, transforming, augmenting, or routing messages to AWS,
other web services and applications. Manufacturers, application developers,
and enterprises can use Icebreaker to extend the onboard capabilities of
physical products by using the cloud to execute logic, communicate with other
products/services, and process telemetry data. End users can control their
physical devices from smart phone apps.

The following diagram illustrates a high-level view of the Icebreaker service:

AWS Console
AWS SDKs
AWS CLI

I

AWS Services
such as
- DynamoDB,
Lambda,
Kinesis, and
Things R AWS Icebreaker oN>

Thing
SDK

loT Applications
“— | using Lambdaand
SNS

You can interact with Icebreaker in a number of ways:

e The Icebreaker Console allows you to configure AWS Icebreaker
services within a graphical environment

e The Icebreaker Command Line Interface (CLI) allows you to configure
AWS Icebreaker services from the command line

e The Icebreaker SDKs allow you to write applications on top of
Icebreaker

e The Icebreaker Thing SDK allows you to write applications in C that run
on internet-connected things

Things are any clients such as micro controllers, sensors, actuators, mobile
devices, or applications that use Icebreaker to connect to the AWS cloud. The
Thing SDK makes it simple to write code running on Internet connected things
to communicate with the Icebreaker service.

There are essentially three types of client applications that interact with
Icebreaker:

« Embedded applications running on Internet connected devices
« Companion applications running on mobile devices or on the web.
e Server applications

Embedded applications are written in C with the Icebreaker thing SDK. They
enable your device to send MQTT messages to and recieve MQTT messages
from Icebreaker. They define what information your devices send to
Icebreaker and how they respond to messages recieved from |cebreaker.

Companion applications are written with the Icebreaker SDKs. These
applications allow you to remotely control your devices.

Server applications query Icebreaker for information about your things and
process and display the information. A device dashboard showing all active
devices is an example of a server application.

Authentication is provided by X509 certificates or AWS Cognito Identities.
Authorization is provided by Icebreaker roles and IAM roles.

Getting Started with AWS Icebreaker

There are three ways to interact with the Icebreaker service:

e Using the Icebreaker Console
e Using the Icebreaker CLI

e Using the Icebreaker SDKs

The following sections will describe using the icebreaker console in more
detail. If you want to use icebreaker CLI, you can refer to AWS-Icebreaker-
User-Guide.pdf

Using the Icebreaker Console

The lcebreaker console can be found at: Icebreaker Console. The console is
divided up into three sections:

o Certificates
e Rules and Integrations
¢ Access and Policies

These sections are selectable by clicking on the appropriate icon in the upper
left hand corner of the console.

Certificates

The certificates section allows you to submit a certificate signing request to
generate a new certificate. It also allows you to activate, transfer, deactivate,
or revoke and existing certificate.

Rules and Integrations

The rules and integrations section allows you to add a new rule and view your
existing rules.

Access and Policies

The access and policies section allows you to add new Icebreaker policies
and view existing Icebreaker policies.

Signe to_Icebreaker console

If you didn’t have AWS account, you need go to the http://aws.amazon.com/ and register an

account

https://icebreaker-preview.us-east-1.aws.amazon.com/Icebreaker
https://icebreaker-preview.us-east-1.aws.amazon.com/Icebreaker
http://aws.amazon.com/

[CRCROR N ET]

https:/ficebreaker-preview.us-east-1.aws.amazon.com/iot/home

lcebreaker

Icebreaker is a managed cloud service that lets connected devices - cars, light bulbs, sensor grids and more - easily and
securely interact with cloud applications and other devices.

Get started Start interactive tutorial

Connect and manage your
devices

Connect devices to the cloud using the
protocol that best fits your
requirements - HTTP, MQTT, or a
custom protocol. Devices can
communicate with each other even if
they are using different protocols.

Getting started documentation

Process and act upon device
data

Filter, transform and act upon data
from devices on the fly, based on
business rules. Icebreaker makes it
easy to use AWS senvices like
Amazon DynamoDB, Amazon Kinesis,
Amazon Machine Leamning, and AWS

Read and set device state at any
time

Icebreaker stores the latest state of a
device so that it can be read or set
anytime, making the device appear to
your applications as if it were online all
the time. You can read or seta
device@@€s state even when the

Gt &

Lambda. device is offiine.

Learn More

Learn More Learn More

Create a Thing in the Thing Registry

Go the Icebreaker console ,click the Dashboard.

& E 9 @ B ‘ T https://icebreaker-preview.us-east-1.aws.amazon.com/iot/dashboard

AWS ~ Services v jon ¥ Support ¥

lcebreaker o

Dashboard

Filter by resource type or thing attribute ‘ Select ‘ ‘ ATl

Previous Next Last

First

Create a thing, e,g: temperature.

G @D E(ERE

https:/ficebreaker-preview.us-east-1.aws.amazon.com/iot/dashboard

AWS ~ Services v Support

Icebreaker @ ©

Create a thing to represent your device in the cloud. This step creates an entry in the thing registry and also a thing shadow for your device.

Name your thing

Name | temperature|

Attributes

Next (optional), you can use thing attributes to describe the identity and capabilities of your device. Each attribute is a key-value pair.

eate

The web page will appear “Connect device” button, Click it.

https://icebreaker-preview.us-east-1.aws.amazon.com/iot/home

G 5 vy H ‘_EIE.@ https://icebreaker-preview.us-east-1.aws.amazon.com/iot/dashboard

AWS v Services - Region ¥ Support v

lcebreaker

Dashboard

Your new thing has been created. From here, you can connect a device to this thing, view your thing and interact with its shadow, or add a rule to take action when this thing sends an

update
add rule :

Choose which SDK you want to use. If you use Beaglebone Green, we recommend select NodelS .

If you use Seeeduino cloud , we recommend select Arduino.

G E@ 9w E ‘_EIEJi https:/ficebreaker-preview.us-east-1.aws.amazon.com/iot/connect?thing=temperature

AWS ~ Services v

Icebreaker e

Connect a Device
Connect your device to one of our many supported SDKs

 Embedded C ' NodeJs Choose a Device SDK to get started
* Arduine ~ Other

Create new cert and new policy.

CRCEOR N = {7 https:/ficebreaker-preview.us-east-1.aws.amazon.com/iot/connect?thing=temperature

AWS v Services v Select a Region ¥ Support ¥

Icebreaker - 6

Connect a Device
Connect your device to one of our many supported SDKs.

~ Embedded C @ Neded$§ You have provided Thing temperature to use in this wizard. Would you like to perform any actions on
© Arduino © other this Thing as a part of this wizard?

Download the three files. Then power on your board.

& @ D @ W\ ‘.EIEBﬂ https:/ficebreaker-preview.us-east-1.aws.amazon.com/iot/connect?thing=temperature

L\ Services v Selact a Region ¥ Support v

lcebreaker ® @

Connect a Device
Connect your device to one of our many supported SDKs

~ Embedded C @ Neded$§ You have provided Thing temperature to use in this wizard. Would you like to perform any actions on
© Arduino © other this Thing as a part of this wizard?

Please download these files and save them in a safe place. Certificates can be retrieved at any time,
but the Private and Public Keys will not be refrievable after closing this form.

« Download Public Key

« Download Private Key

« Download Certificate

Confirm & Start Connecting

AN L BBG2 - o ES

“ Home Share View 0
\(—:I - 1 . b ThisPC » Local Disk (E:) » seeedstudio » aws » BBGZ v & Search BBGZ 0
~ - - - -
4% Favorites Mame Date modified Type Size
& Downloads || T74fd93c39-private.pem.key KEY File 2KB
=l Recent places || T74fd93c39-public.pem.key KEY File TKB
B Desktop | 55l 7744d93c59-certificate. pem.crt Security Certificate 2k8]
A T

Amazon provides the github maintain the code. Next page is the latest code introduction. We also

provide on-board code to test the icebreaker.

« C 4 @ https//icebreaker-preview.us-east-1.aws.amazon.com/iot/connect?thing=temperature-01 77/ @ ©

Services v Edit v joey v Select a Region v Support v

‘ Icel K L e

Connect a Device

Connect your device to one of our many supported SDKs

Embedded ¢ ® NodeJ$ « Download the loT NodeJS SDK from our Github repositoryHere
Arduino Other B

Download NodeJS SDK

Download the 10T NodeJS SDK

Follow Github README
Get the sample code

Run a Sample Program

AWS MQTT publish and subscribe

Upload xxxxxx-private.pem.key and xxxxxxx-certificate.pem.crt to prodCerts folder.

€« C A [)192.168.7.

Cloud9 Fle Edit Fnd View Gote Run Tools Window Help Preview @ Run
New File Qul-N B Helloworldjs
New From Template... Cmi-Shift-N
Open... ae
Open Recent » var client_params

jar aws_ require(”

Workspace

Save ails
Save hs... Culshift-s
Save Al

Revet to Saved cul shiftQ
RevetAllto Saved AltshiftQ

iot_client aws_iot(client_params);
Mount FTP or SFTP server iot_client.connect()

Upload Local Files. iot_client.subscribe(’

Line Endings L3 iot_client.onMessage (topic, message){

Close File AW
‘dose Al Files Alt-Shift-w
8 potentiometer_sub.js
8 time_pub.js
A time_sub_js
v i prodcerts
B device identity.pem
B device_key.pem
B Verisign-Class 3-Public-Primary-Certification-At
v . sc
A aws_iotjs
48 iot_http.js

iot_client.publish(’

Cloud9 Fle Edit Find Vi

> Bm Grove_BBG
B analog.is
8 analog2.js

B Blink.ing Walkihroughs
B blinkpy

B blinkled.js W I

B vt elcome

A fade js @

A input.js
B input2js
A shiftout.s Choose a Preset
v W DotSdkS Cloud? - The introduciion
v B example - :
A Helloworld js = : = The Clouds Blog
B hitp_pub js _
) o gine
B led_pub.js - Google Compute Engine recently got us
B led_subs = very excited aboutthe possibilifies for
B potentiometer_pubjs = - Cloud9. So much so, that we built support

i for Compute Engine into the backend of
8 potentiometer_sub.js 2 LIS the soon-lo-be-released major update of
B time_pub.js —— . -
7 =

4 time_sub.js =8
¥ I prodCerts
B 774fdo3c59-certificate.pem.crt
B 774fd93¢59-private.pem.key
B device_identity.pem
B device_key.pem
B VeriSign Class 3-Public Primary-Certification-At
» im sc
> B static
» i Support

Workspace

Welcome to Cloud9. Use this welcome screen 1o tweak the ook & feel of the Cloud user interface

Rename 774fd93c59-private.pem.key as device_identity.pem.

Rename 774fd93c59-certificate.pem.crt as device_key.pem.

If you use mqtt protocol, you need modify the port to 8883.
/var/lib/cloud9/lotSdkJS/src/aws_iot.js

this.client_params.port = checkParams(client_params.port, 8883);

If you use http protocol, you need modify the port to 443. and default port is 443.

Run the Helloworld.js example. You can see publishes and subscribe successfully.

< C f
Cloud9 File Edit Find : Window Help

B siinkino = 0 Helloworld
A blink.oy
48 blinkled.js
blinky.tb
A fade s
A inputjs
A input2.js
A shiftout j5
v i Jotsdias
v I eample
A Helloworld.js
A http_pub.js

Workspace

B
Eeom~ourwne

iot_client.connect(
iot_client.subscribe(

4 potentiometer_sub.js

4 time_pub.js

A time_sub.js
v 8 prodCerts

B device_identity.pem

B device key.pem e e IotSdkJS/example/H 3\

B veriSign-Class 3-Public-Primary-Certification-At 2 Command: lotSdkJSlexample/Helloworl RunnerNodejs CWD ENV
V= debugger listening on port 15454

aws_iot.j successfully publishes: Hello world

_iot.js i

B iot_http js Connected to mqtts://g.us-east-1.pb.iot.amazonaws.com

successfully sending subscribe
* i static Hello world

» im Support

e.g Grove temperature sensor.

Connect the Grove temperature sensor to BBG, Modify the time_pub.js file.

var aws_iot = require("../src/aws_iot.js");
var net = require('net');
var exec = require('child_process').exec;
var HOST ='127.0.0.1";
var PORT = 7000;
var temperature = 25;
var client_params = {
host: 'mqtts://g.us-east-1.pb.iot.amazonaws.com’,
clientld: 'sdk_pub2'
Ik
// Create a server instance, and chain the listen function to it
net.createServer(function(socket) {
console.log('CONNECTED: ' + socket.remoteAddress +':'+ socket.remotePort);
// Add a 'data’ event handler to this instance of socket
socket.on('data’, function(data) {
//console.log('DATA ' + socket.remoteAddress + ': ' + data);
temperature = data;

socket.write('This is your request: "' + data + '"');

};
// Add a 'close' event handler to this instance of socket
socket.on('close’, function(data) {

console.log('Socket connection closed... ');

1;

1).listen(PORT, HOST);

iot_client = new aws_iot(client_params);
iot_client.connect();
exec('python Grove_Starter_Kit_for BBG/Python-App.py',function(error,stdout,stderr){

if(stdout.length >1){

console.log('you offer args:',stdout);
}else {

console.log('you don\'t offer args');

}
if(error) {

console.info('stderr : '+stderr);
}

N;

setinterval(function(){
iot_client.publish('topic/test',temperature);

1, 2000);

Download https://github.com/Seeed-Studio/Grove Starter Kit for BBG to lotSdkJS fold. Create a

python file named Python-App.py.

import socket
import grove_temperature_sensor
if _name__=="__main__":

client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

client.connect(('127.0.0.1', 7000))

while True:
temperature = grove_temperature_sensor.read_temperature('v1.2')
client.sendall(str(temperature))

data = client.recv(1024)

print data

client.close()

print 'Received', repr(data)

https://github.com/Seeed-Studio/Grove_Starter_Kit_for_BBG

bash - potent fime_|
» B _includes

> = _layouts

* 8 autorun

» i bone101

> B examples

v i lotsdias re - grove_temperature_sensor.read_temperature('v

emp

v in eample client.sendal1(str(temperature))
v I Grove Starter Kit_for BBG data = client.recw(

print data

client.close()

» B grove_accelerometer_169
> W grove_chainable_rgb_led
D print 'R ed’, repr(data)
4 grove_buzzer.py
A grove i2c_adc.py
A grove_oled py
48 grove relay.py
4 grove_sound_sensor.py
4 grove_temperature_sensor.py
A logo.py
A python-App.py
B README.md
A Helloworld js
4 hitp_pub.is
B led_pub.js

Modify the time_sub.js file.

var aws_iot = require("../src/aws_iot.js");
var client_params = {
host: 'mqtts://g.us-east-1.pb.iot.amazonaws.com’,

clientld: 'sdk_sub?2'

var iot_client = new aws_iot(client_params);
iot_client.connect();

//iot_client.subscribe(['topic/a’, 'topic/b']);

iot_client.subscribe('topic/test’);
iot_client.onMessage(function(topic, message){
console.log(topic.toString() + ' '+ message.toString());

1;

First, run the time_pub.js to publish temperature data to AWS.

Second, run the time_sub.js to subscribe data from the AWS.

lotSdkJSlexamplef

Command: loiSdkJS/examplefiime_pub js Runner: Node js

CONNECTED: 127.0.08.1:54266

successfully publishes: 25.69

Connected to mgtts://g.us-east-1.pb.lot.amazonaws.com
successfully publishes: .69

successfully publishes:

successfully publishes:

successfully publishes:

successfully publishes:

successfully publishes:

CWD

ENV

lotSdkJSlexample/
sop Command:

debugger listening on port 15454

Connected to mgtts://g.us-east-1.pb.iot.amazonaws.com
successfully sending subscribe

topic/test 25.69

topic/test 25.69

topic/test 25.69

topic/test 25.69

topic/test 25.65

ample/fime

Runner: Node js

CWD

ENV

